Changement climatique - Recherche française (avec laboratoires CNRS) - 2010-2015


Climatic control of forest herb seed banks along a latitudinal gradient

Publication Year


  • Plue, Jan
  • De Frenne, Pieter
  • Acharya, Kamal
  • Brunet, Jorg
  • Chabrerie, Olivier
  • Decocq, Guillaume
  • Diekmann, Martin
  • Graae, Bente J.
  • Heinken, Thilo
  • Hermy, Martin
  • Kolb, Annette
  • Lemke, Isgard
  • Liira, Jaan
  • Naaf, Tobias
  • Shevtsova, Anna
  • Verheyen, Kris
  • Wulf, Monika
  • Cousins, Sara A. O.
GLOBAL ECOLOGY AND BIOGEOGRAPHY Volume: 22 Issue: 10 Pages: 1106-1117 Published: 2013
1466-822X eISSN: 1466-8238

Aim Seed banks are central to the regeneration strategy of many plant species. Any factor altering seed bank density thus affects plant regeneration and population dynamics. Although seed banks are dynamic entities controlled by multiple environmental drivers, climatic factors are the most comprehensive, but still poorly understood. This study investigates how climatic variation structures seed production and resulting seed bank patterns. Location Temperate forests along a 1900km latitudinal gradient in north-western (NW) Europe. Methods Seed production and seed bank density were quantified in 153 plots along the gradient for four forest herbs with different seed longevity: Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica. We tested the importance of climatic and local environmental factors in shaping seed production and seed bank density. Results Seed production was determined by population size, and not by climatic factors. G.urbanum and M.effusum seed bank density declined with decreasing temperature (growing degree days) and/or increasing temperature range (maximum-minimum temperature). P.nemoralis and S.sylvatica seed bank density were limited by population size and not by climatic variables. Seed bank density was also influenced by other, local environmental factors such as soil pH or light availability. Different seed bank patterns emerged due to differential seed longevities. Species with long-lived seeds maintained constant seed bank densities by counteracting the reduced chance of regular years with high seed production at colder northern latitudes. Main conclusions Seed bank patterns show clear interspecific variation in response to climate across the distribution range. Not all seed banking species may be as well equipped to buffer climate change via their seed bank, notably in short-term persistent species. Since the buffering capacity of seed banks is key to species persistence, these results provide crucial information to advance climatic change predictions on range shifts, community and biodiversity responses.

Author Keyword(s)
  • Climate change
  • interspecific variation
  • plant-climate interaction
  • seed longevity
  • seed production
  • temperate deciduous forest
  • temperature
KeyWord(s) Plus
  • SOIL
  • MASS
ESI Discipline(s)
  • Environment/Ecology
  • Geosciences
Web of Science Category(ies)
  • Ecology
  • Geography, Physical

[Plue, Jan; Cousins, Sara A. O.] Stockholm Univ, Dept Phys Geog & Quaternaty Geol, S-10654 Stockholm, Sweden; [De Frenne, Pieter; Verheyen, Kris] Univ Ghent, Forest & Nat Lab, B-9000 Ghent, Belgium; [Acharya, Kamal; Graae, Bente J.] Norwegian Univ Sci & Technol, Dept Biol, N-7034 Trondheim, Norway; [Brunet, Jorg] Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, Alnarp, Sweden; [Chabrerie, Olivier; Decocq, Guillaume] Univ Picardy Jules Verne, Plant Biodivers Lab, Amiens, France; [Diekmann, Martin; Kolb, Annette; Lemke, Isgard] Univ Bremen, D-28359 Bremen, Germany; [Heinken, Thilo] Univ Potsdam, Potsdam, Germany; [Hermy, Martin] Univ Leuven, Div Forest Nat & Landscape, Louvain, Belgium; [Liira, Jaan] Univ Tartu, Inst Ecol & Earth Sci, EE-50090 Tartu, Estonia; [Naaf, Tobias; Wulf, Monika] Inst Land Use Syst & Landscape Ecol, Ctr Agr Landscape & Land Use Res, Muncheberg, Germany; [Shevtsova, Anna] Umea Univ, Dept Med Biochem & Biophys, S-90187 Umea, Sweden

Reprint Adress

Plue, J (reprint author), Stockholm Univ, Dept Phys Geog & Quaternaty Geol, S-10654 Stockholm, Sweden.

  • Belgium
  • Estonia
  • France
  • Germany
  • Norway
  • Sweden
CNRS - Adress(es)
  • Ecologie et dynamique des systèmes anthropisés (EDYSAN), FRE3498
Accession Number
Powered by Lodex 9.3.10