Changement climatique - Recherche française (avec laboratoires CNRS) - 2010-2015


Assessing soil carbon storage rates under no-tillage: Comparing the synchronic and diachronic approaches

Publication Year


  • Costa Junior, C.
  • Corbeels, M.
  • Bernoux, M.
  • Piccolo, M. C.
  • Siqueira Neto, M.
  • Feigl, B. J.
  • Cerri, C. E. P.
  • Cerri, C. C.
  • Scopel, E.
  • Lal, R.
SOIL & TILLAGE RESEARCH Volume: 134 Pages: 207-212 Published: 2013
0167-1987 eISSN: 1879-3444

No-tillage (NT) practices with crop residue mulching are seen as an effective way to accumulate soil carbon (C). The rate of soil C accumulation can be determined by measuring soil C stocks over time (diachronic approach) or along a chronosequence that substitutes spatial history differences for time differences (synchronic approach). The objective of this communication is to compare the diachronic and synchronic approaches for determining the rates of soil C storage under NT in the Cerrado region of Brazil. In 2003 and 2007, soil C stocks (0-20 cm) were determined in three NT fields with 5, 9 and 17 years of NT adoption in 2007 (NT-5, NT-9 and NT-17, respectively), one conventionally tilled field (CT, 30 years of tillage in 2007) and one native Cerrado plot (CE) in Rio Verde (Goias state, Brazil). Soil C accumulation rates were calculated following both the synchronic and diachronic approach. Results from the synchronic approach showed that 30 years of cropping under CT depleted the soil C stock to 34.4 Mg C ha(-1), which is a decrease of about 27% of the original levels observed under the native vegetation (CE, 47.1 and 47.3 Mg C ha(-1), respectively, in 2003 and 2007). Instead, NT adoption had been accumulating soil C through the evaluated years. Soil C stocks measured under NT areas in 2003 and 2007 were 29.9 and 31.3 Mg C ha(-1) (NT-5), 33.4 and 34.4 Mg C ha(-1) (NT-9) and 45.8 and 46.4 Mg C ha(-1) (NT-17), respectively. Much more moderate rates of soil C accumulation were observed diachronically (0.12-0.28 Mg C ha(-1) year(-1)) than with the synchronic approach (133 and 1.27 Mg C ha(-1) year(-1) in 2003 and 2007, respectively). Soil C stocks under CE between 2003 and 2007 (in the diachronic approach) did not change, indicating that diachronic measurements were accurate. Thus, it appears to be very difficult to eliminate all non-wanted sources of soil C variation (i.e. soil texture, land-use history) analysing the soil C accumulation in a chronosequence (synchronic approach). In spite of a time span of years between sampling dates, our results suggest the need for using the diachronic approach when assessing soil C changes under altering land-use or management patterns. Increasing the number of diachronic assessments may also help the parameterization of process-oriented models for exploring the effects of no-tillage systems on soil C storage rates more accurately. (C) 2013 Elsevier B.V. All rights reserved.

Author Keyword(s)
  • Cerrado
  • Soil organic matter
  • Soil C accumulation
  • No-tillage
  • Soil sampling
KeyWord(s) Plus
ESI Discipline(s)
  • Agricultural Sciences
  • Environment/Ecology
Web of Science Category(ies)
  • Soil Science

[Costa Junior, C.; Piccolo, M. C.; Siqueira Neto, M.; Feigl, B. J.; Cerri, C. C.] Univ Sao Paulo, Lab Biogeochem, Ctr Nucl Energy Agr, CENA, BR-13416000 Piracicaba, SP, Brazil; [Corbeels, M.; Scopel, E.] UR SCA, Ctr Cooperat Int Rech Agron Dev, Montpellier 5, France; [Corbeels, M.] Embrapa Cerrados, BR-73310970 Planaltina, DF, Brazil; [Bernoux, M.] IRD, INRA, Montpellier SupAgro, CIRAD,UMR Eco&Sols, F-34060 Montpellier 2, France; [Cerri, C. E. P.] Univ Sao Paulo, Dept Soil Sci, ESALQ, BR-13418900 Piracicaba, SP, Brazil; [Lal, R.] Ohio State Univ, Carbon Management & Sequestrat Ctr, Sch Environm & Nat Resources, OARDC FAES, Columbus, OH 43210 USA

Reprint Adress

Bernoux, M (reprint author), IRD, INRA, Montpellier SupAgro, CIRAD,UMR Eco&Sols, 2 Pl Viala, F-34060 Montpellier 2, France.

  • Brazil
  • France
  • United States
Accession Number
Powered by Lodex 9.3.10